Investigación económica y datos masivos: mercados, fines sociales y colaboración público-privada

José García Montalvo
Resumen

Este artículo presenta un análisis de las perspectivas abiertas por la creciente disponibilidad de datos masivos para realizar investigación económica, así como los riesgos asociados a las mismas. A diferencia de otras contribuciones, la aproximación adoptada se enfoca en los generadores de la información distinguiendo entre los datos generados por empresas privadas para buscar soluciones de mercado, los datos originados en las administraciones públicas y las experiencias recientes de colaboración público-privada que se están abriendo en el campo del uso de datos masivos (big data) y la aplicación de técnicas de aprendizaje automático (machine learning).

Article Details

Palabras clave:
datos masivos, aprendizaje automático, colaboración público-privada
Citas

AIREF (2020, octubre). Opinión para una estrategia de acceso a datos administrativos. Opinión 1/20.

Aspachs, O., Durante, R., Graziano, A., Mestres, J., Reynal-Querol, M., & Montalvo, J. G. (2021). Tracking the impact of COVID-19 on economic inequality at high frequency. PloS one, 16(3). https://doi.org/10.1371/journal.pone.0249121.

Athey, S., Ferguson, B. A., Gentzkow, M., & Schmidt, T. (2020). Experienced segregation (NBER Working paper No. 27572). National Bureau of Economic Research.

Baker, S. R. (2018). Debt and the response to household income shocks: Validation and application of linked financial account data. Journal of Political Economy, 126(4), 1504-1557.

Baker, S. R., Farrokhnia, R. A., Meyer, S., Pagel, M., & Yannelis, C. (2020). Income, liquidity, and the consumption response to the 2020 economic stimulus payments (NBER Working paper No. 27097). National Bureau of Economic Research.

Barcellan, R., Nielsen, P., Calsamiglia, C., Camerer, C., Cantillon, E., Crépon, B., ... Wright, L. (2017). Developments in Data for Economic Research. In L. Matyas, R. Blundell, E. Cantillon, B. Chizzolini, M. Ivaldi, W. Leininger, et al. (Eds.), Economics without borders: Economic Research for European Policy Challenges (pp. 568-611). Cambridge University Press. doi:10.1017/9781316636404.015

Bounie, D., Camara, Y., Fize, E., Galbraith, J., Landais, C., Lavest, C., & Savatier, B. (2020). Consumption dynamics in the covid crisis: real time insights from French transaction bank data. Covid Economics, 59, 1-39.

Card, D., Chetty, R., Feldstein, M. S., & Saez, E. (2010). Expanding access to administrative data for research in the United States. American Economic Association, ten years and beyond: Economists answer NSF's call for long-term research agendas. National Science Foundation

Carvalho, V. M., Hansen, S., Ortiz, A., Garcia, J. R., Rodrigo, T., Rodriguez Mora, S., & Ruiz de Aguirre, P. (2020). Tracking the COVID-19 crisis with high-resolution transaction data. CEPR Discussion Paper No. DP14642.

Carvalho, P., Peralta, S. & dos Santos, J. P. (2020). What and how did people buy during the Great Lockdown? Evidence from electronic payments. ECARES Working Paper 2020-20.

Cavallo A., & Rigobon R. (2016). The Billion Prices Project: Using Online Prices for Measurement and Research. Journal of Economic Perspectives, 30(2), 151-78.

Cavallo, A. (2013). Online and official price indexes: Measuring Argentina’s inflation. Journal of Monetary Economics, 60(2), 152-165.

Chen, X., & Nordhaus, W. D. (2011). Using luminosity data as a proxy for economic statistics. Proceedings of the National Academy of Sciences, 108(21), 8589–8594.

Chen, S., Igan, D. O., Pierri, N., Presbitero, A. F., Soledad, M., & Peria, M. (2020). Tracking the economic impact of COVID-19 and mitigation policies in Europe and the United States. IMF Working Papers, 2020(125).

Chetty, R., Friedman, J. N., Hendren, N., & Stepner, M. (2020). Real-time economics: A new platform to track the impacts of COVID-19 on people, businesses, and communities using private sector data (NBER Working Paper No 27431). National Bureau of Economic Research.

Chetty, R., Grusky D., Hell M., Hendren N., Manduca R., & Narang J. (2016). The Fading American Dream: Trends in Absolute Income Mobility Since 1940. Science 356(6336), 398-406.

Cox, N., Ganong, P., Noel, P., Vavra, J., Wong, A., Farrell, D., ... Deadman, E. (2020). Initial impacts of the pandemic on consumer behavior: Evidence from linked income, spending, and savings data. Brookings Papers on Economic Activity, 2020(2), 35-82.

Davidowitz, S. (2017). Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really. Dey Streets Books

Derman, E. (2004). My life as a quant. John Wiley & Sons.

Doerr, S., Gambacorta, L., & Garralda, J. M. S. (2021). Big data and machine learning in central banking. BIS Working Papers, (930).

Duhigg, C. (2011). The power of habit. Random House.

García Montalvo, J. (2003). Liquidity and market makers: a pseudo-experimental analysis with ultrahigh frequency data. The European Journal of Finance, 9(4), 358-378.

García Montalvo, J. (2014). El impacto del big data en los servicios financieros. Papeles de Economía Española, Número extraordinario, 43-59.

García Montalvo, J., & Reynal-Querol M. (2020). Distributional Effects of COVID-19 on Spending: A First Look at the Evidence from Spain, Barcelona GSE Working Paper 1201.

García Montalvo, J. (2021). Data science y sus aplicaciones económicas: una perspectiva personal. En D. Peña, P. Poncela & E. Ruiz (Eds.), Análisis Econométrico y Big Data (pp. 5-24). FUNCAS.

García, Montalvo, J., Reynal-Querol M., & Muñoz J.C. (2021). Measuring inequality from above. Barcelona GSE Working Paper No. 1252.

García Montalvo, J., & Reynal-Querol, M. (2021). Ethnic diversity and growth: Revisiting the evidence. Review of Economics and Statistics, 103(3), 521-532.

Gelman, M., Kariv, S., Shapiro, M. D., Silverman, D., & Tadelis, S. (2014). Harnessing naturally occurring data to measure the response of spending to income. Science, 345(6193), 212-215.

Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014.

Golec, P., Kapetanios, G., Neuteboom, N., Ritsema, F., & Ventouri, A. (2020). Disentangling the effect of government restrictions and consumers’ reaction function to the Covid-19 pandemic: evidence from geo-located transactions data for The Netherlands. DAFM Working Paper Series, No. 2020/4.

Hac?o?lu-Hoke, S., Känzig, D. R., & Surico, P. (2021). The distributional impact of the pandemic. European Economic Review, 134, 103680.

Hansen, S., McMahon, M., & Prat, A. (2018). Transparency and deliberation within the FOMC: a computational linguistics approach. The Quarterly Journal of Economics, 133(2), 801-870.

Instituto Nacional de Estadística, Seguridad Social & Banco de España. (2021, 13 de abril). Comunicado oficial por el cual el Instituto Nacional de Estadística, la Seguridad Social y el Banco de España acuerdan trabajar conjuntamente en el desarrollo de un sistema de acceso a sus bases de datos con fines científicos de interés público. [comunicado de prensa].

Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016). Combining satellite imagery and machine learning to predict poverty. Science, 353(6301), 790-794.

Kubota, S., Onishi, K., & Toyama, Y. (2021). Consumption responses to COVID-19 payments: evidence from a natural experiment and bank account data. Journal of Economic Behavior & Organization, 188, 1-17.

Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of Google Flu: traps in big data analysis. Science, 343(6176), 1203-1205.

Olafsson, A., & Pagel, M. (2018). The liquid hand-to-mouth: Evidence from personal finance management software. The Review of Financial Studies, 31(11), 4398-4446.

Pinkovskiy, M., & Sala-i-Martin, X. (2016). Lights, camera… income! Illuminating the national accounts-household surveys debate. The Quarterly Journal of Economics, 131(2), 579-631.

Sheridan, A., Andersen, A. L., Hansen, E. T., & Johannesen, N. (2020). Social distancing laws cause only small losses of economic activity during the COVID-19 pandemic in Scandinavia. Proceedings of the National Academy of Sciences, 117(34), 20468-20473.

Williamson, E., Walker, A. J., Bhaskaran, K., Bacon, S., Bates, C., Morton, C. E., ... Goldacre, B. (2020). OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. MedRxiv.

Yu, P., McLaughlin, J., & Levy, M. (2014). Big Data: A Big Disappointment for Scoring Consumer Credit Risk. NCLC, National Consumer Law Center, Boston, MA, 14.